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We present converged quantum mechanical calculations of state-to-state 
transition probabilities for the collision of two hydrogen fluoride molecules 
with zero total angular momentum. The potential energy surface is obtained 
by adding a vibrational dependence to the interaction potential of  Alexander 
and DePristo. We have calculated converged transition probabilities for vibra- 
t ion- to-vibrat ion and vibra t ion- to- t ransla t ion-and-rota t ion energy transfer 
including full vibrat ion-rotat ion coupling. The calculations include up to 948 
coupled channels. Final production runs were carried out with a highly 
vectorized code on the  Minnesota Supercomputer  Institute's Control Data 
Corporat ion Cyber 205 computer. 
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1. Introduct ion  

Vibrat ion-to-vibrat ion(V-V) energy transfer is usually much faster than vibra- 
t ion-to- translat ion (V-T) or vibrat ion-to-rotat ion (V-R) energy transfer, and 
hence it plays a central role in molecular energy relaxation under many circum- 
stances [1, 2]. Rigorous treatments have lagged behind those for other forms of 
energy transfer though because V-T and V-R  processes occur in a tom-dia tom 
collisions, but V-V processes only occur in atom-tr ia tom, d ia tom-dia tom,  or 
larger systems, and the extra degrees of  freedom make a converged quantal 
solution very difficult. We have begun a large-scale computational  effort directed 
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to this problem, and in the present article we report a converged solution to the 
nuclear-motion Schroedinger equation for collisions of  two HF molecules with 
a very approximate potential energy surface and with the total angular momentum 
zero. We are encouraged by this success, and we hope in future work to obtain 
converged solutions for a more accurate potential energy surface and for nonzero 
total angular momenta, both of which would be required to compare our results 
to experiment. 

The potential energy surface used for this work is called the modified Alexander- 
DePristo (MAD) surface, and is described below. The method used for the 
dynamics calculations is R matrix propagation. Our implementation and 
vectorization of this algorithm for three-dimensional diatom-diatom collisions 
is described in detail in a previous paper [3] and is only summarized briefly here. 
Preliminary results for V-V transition probabilities were reported in a Communi- 
cation in this journal [4] and a conference paper [5]; final results are reported 
here and are compared to the calculated transition probabilities for vibration-to- 
translation-and-rotation (V-T, R) energy transfer, a 

2. Potential energy function 

We begin with the H F - H F  interaction potential of  Alexander and DePristo [6], 
which is a fit to the ab initio SCF data of Yarkony et al [7]. This potential is 
defined for both diatoms at their equilibrium separations, and it is given by 

= (4~) 3/2 E U~,x2x(r) Yx,x2x(e, R,,/~2), (1) 
AtA2A 

where 
y * ,, 

YxIA2x = Y~ (AlmlA2m2[A1A2Am) AIm1(R1)Yx2m2(R2)Y~m(~), (2) 
rnlm2m 

where r is the distance between the centres of mass of the two molecules, 
denotes the orientation of  a vector from the center of mass of  molecule 1 to the 
center of mass of molecule 2 in a laboratory-frame coordinate system, ( . . .  [ . . . )  
denotes a Clebsch-Gordan coefficient, Yam is a spherical harmonic, and Ri is a 
vector indicating the bond length and direction of molecule i in the frame of 
reference where the Z axis is along a laboratory-fixed direction. Alexander and 
DePristo truncated the sum in Eq. (1) to 6 terms, namely those with (A1A2A) 
equal to (000), (112), (011), (123), (101), and (213). The coefficients U~A2x for 
the "fifth and sixth terms are equal by symmetry to minus those for the third and 
fourth. 

To use the Alexander-DePristo potential for the present calculations we had to 
add a vibrational dependence. This was done by extending an approximation of 
Gianturco et al [8] for the vibrational dependence of the short-range repulsive 

The V-V transition probabilities in [4] and [5] are systematically low by a few per cent due to an 
error in some of the vibrational matrix elements. There are two additional corrections to [5]: on p. 
187, the number of operations per step should be 34]N 3, which, when combined with our actual 
execution time for the N = 948 run, yields a lower bound for the execution rate of 139 MFLOPS 
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interactions and by using accurate Ri-dependent multipole moments to simulate 
the vibrational dependence of  long-range electrostatic interactions. 

For the short-range vibrational dependence, we follow Gianturco et al who wrote 
[8] 

e r UAlX2 A ~- UAl)t2)t( ) exp[-otxlx2x(RaWR2-2Re)], (3 )  

where Re is the classical equilibrium internuclear distance of HF and 

1 Ux,~x(ro)] dr r=ro" (4) 
aAIA2A = __[ e --1 dUx,x~x 

They originally suggested this for (h lh2h)=  (000), but we employ it here for all 
(hlh 2h ). Gianturco et al also suggested that ro be the translational classical turning 
point. We set r0 equal to 4.1 ao because that is approximately the largest distance 
close to a typical classical translational turning point for which none of  the U~,x2x 
are passing through zero or are near to a local extremum. 

The vibrational dependence of the long-range potential may be added more 
accurately. In the Alexander-DePristo potential the coefficients U~12 and U~23 
take the form 

U~12 = - C l  e - c 2 r  - c3 e - c 4 r  - ( 2/15) l/2tz 2 r-3 (5) 

U~23 = - (  Cs/ r -  c6)e-CTr + (1/7)I/2tzOr-4, (6) 

where the ci are constants, and/z  and 0 are the dipole and quadrupole moments, 
which were set equal to vibrationally averaged values of  0.716 and 1.93 a.u., 

respectively. First we replace /z 2 by /z(R~)/z(R2) and /z0 by tz(R1)O(R2), and 
then we replace the multipole moments in these expressions with the linear 
functions 

~(R,)  = ~ + t ~ , ~ ( R ,  - R~) (7) 

and 

O(R,) = 0 e + ~/x,x~x(R, - Re), (8) 

where/.~e and 0e are values corresponding to the equilibrium internuclear separa- 
tion [9, 10] and the flx,A:x and yA,~x are constants. The constants fl112, fl123, and 
")/123 were chosen so that (d/dR~) exp(-aa~x2aR~)lz(Ri) and 
(d/dRi) exp(-aA~A~aR~)O(R~) reproduce the experimental value of dlz/dR~= 
0.3169 a.u. [9] and the theoretical value of dO/dRi = 1.601 a.u. [11], respectively. 
Notice that U123 involves tz(R~)O(R2), but U2~3 involves O(R1)I~(R2). 

The full potential is the sum o f  the interaction potential just described plus the 
potentials for the noninteracting diatoms. The latter are taken from the work of 
Murrell and Sorbie [12]. The resulting potential energy surface is called the 
modified Alexander-DePristo (MAD) surface. 

To use the MAD potential for the scattering calculations we re-express it in a 
body-frame coordinate system as [13, 14] 

~ L Vq~q2~(r, R~, R2)OlJq,q2t.(~l, r2), (9) 
ql q2~ 
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where 

471" 
~ P2) - I-2(1 + 8~,o)] ' /2 [ Y q ' " ( P ' )  Y q 2 - ' ~ ( r 2 )  -t- Y q , _ , ~ ( ~ , )  Yq2~.,(~2)] ,  (10) 

in which the f)qlq2tx are linear combinations of the U~,a~x, and r l  and r2 are unit 
vectors along the molecular axes in the frame in which the vector connecting the 
molecular centers of  mass defines the z axis. We note that although the MAD 
potential has only 6 terms in the laboratory-frame expansion (1), it gives rise to 
9 terms in the body-frame expansion (9) that is used for calculating matrix 
elements in the vibrational-rotational basis. Six of  these are shown in Fig. 1, for 
R1 = R2 = 1.733 ao, and the other three are related to three of those shown by 
symmetry. 

The MAD potential is compared to the more accurate Redmon-Binkley [15] 
potential in a previous paper [5]. That comparison indicates that the approxima- 
tion of Eqs. (3) and (4) does not seem to predict the character of the vibrational 
force equally validly for different orientations of approach. Yet the extent of 
rotational participation in V-V energy transfer may depend sensitively on the 
orientational dependence of  the vibrational force. Further dynamics calculations 
with more accurate interaction potentials may be required to learn the effect of 
this approximation on the state-to-state transition probabilities. Nevertheless, 
even though the vibrational forces of  the MAD potential are not quantitatively 
accurate, it provides a reasonable but simple test potential for which converged 
V-V energy transfer calculations may be used as a benchmark, and so we 
proceeded to carry out such calculations. 
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Fig. 1. Body-frame expansion coefficients l~q,q2~(r  , R 1 = 1.733ao, R 2 = 1.733ao) as a function of  r for 
the MAD potential. The legend in the upper  right identifies the triads of  ql, q2, and/z .  The units are 
millihartrees (10 -3 Eh) and bohrs  (ao) 
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3. Scattering calculations 

3.1. Theoretical formulation 

The close coupling approximation for the quantum mechanical wave function 
for nuclear motion is 

1 N 
~.o = -  E X.(x, ~)f..o(r, E), (11) 

r n = l  

where x denotes the collection of ~, R1, and R2, E denotes the total energy, X,  
is a symmetrized basis function, f,-0 is a radial translational wave function, and 
n and no are channel indices. Equation (11) leads to N coupled ordinary 
differential equations, the close coupling equations, for the fn,o [16-21] and these 
are solved by the R matrix propagation method [22-24] with the usual reactance- 
matrix boundary  conditions. The state-to-state transition probabilities are com- 
puted from the solutions, and they converge to the accurate solution of the 
nuclear-motion Schroedinger equation as the basis becomes complete, i.e., as 
N ~  in (11). 

The basis functions we use are eigenfunctions of  the total angular momentum,  
the molecule interchange operator, and the parity operator; this block diagonalizes 
the potential matrix in the total angular momentum quantum number  J, its 
component  M on a laboratory-fixed axis, the interchange symmetry quantum 
number  T/, and the parity quantum number  P, and thus it allows the close coupling 
equations to be solved separately for each J, ,/, and P (the solutions are indepen- 
dent of M).  The index n in (11) then specifies a set of  quantum numbers (vl,  v2), 
(Jl ,J2), J12, l, Jr, M, r/, and P, where v~ and v2 are vibrational quantum numbers, 
j l  and j2 are rotational quantum numbers, and j12 is the quantum number  for the 
vector sum of the rotational angular momenta  of  the two molecules. Because it 
is not possible to distinguish which molecule has which set of  quantum numbers, 
only sets with vl > v2 or with vl = v2 and jl-->j2 are included. We only consider 
the initial state Vl= v2 = 1, j 2 = j 2 = 0 ,  J = 0 .  This state has even interchange 
symmetry, and it is only coupled to other basis functions that are also symmetric 
under this operation; thus we restrict our basis to such symmetric functions. In 
addition, this initial state has even parity so we only need basis functions with 
P =  +1. Although they are not independent quantum numbers it is convenient 
to define Vsum as v I At- v 2 and Jsum as j l  q-j2. To select the basis functions for a given 
calculation we choose a maximum value v . . . . . . .  for Vs,m; and for each Vsum--< 
/) . . . . . . .  we choose a maximum value j . . . . . . .  ( V s u m )  for Jsum" In summary then, 
we include all possible combinations of  (v~, v2), (ja ,J2), J12, and I consistent with 
these conditions on Vl >--v2 and on Jl---J2 and with J = M = 0, ~7 = P = +1. As a 
consequence of the interchange symmetry, the physically meaningful transition 
probabilities are to symmetric final states that can be labelled either by vl > v2 
with any pair ofj~ and J2 or by Vl = v2 with j~ >-J2. 

Further details of the calculations and the numerical algorithms are given in 
previous papers [3, 5]. 
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The calculations yield transition probabilities Pv,j,o:j:-. ~;j;v~j~. In the present article 
we concentrate o n  a single initial state, (VlJlV2j2)= (1010). In addition to these 
eight-index transition probabilities, which are already summed over l' and J~2, 
we also consider probabilities summed over subsets of  final rotational states. We 
define the rotationally summed V-V transition probability as 

p.VV= 
Jsum ~' PlOlO-,ejioj~" (12) 

JlJ~ 
j i +j~=j;~m 

and the total V-V transition probability as 

= p VV (13)  p W  ~ ~sum" 
Jsum 

Similarly we define the rotationally summed V-T, R transition probability as the 
sum of  the P1010-,1)~0~ values. The V-V and V-T, R language is convenient (and 
conventional) but technically oversimplified--in the former case since the V-V 
process always includes a small translational component,  and it also includes a 
rotational component except when j~um = 0 ,  and in the latter case since we do 
not include the two-quantum process (v~ = v~ = 0) in the V-T, R probabilities. 
The results show that, at least for the potential used here, the rotational component 
of  the V-V process is not negligible, but the two-vibrational-quanta V-T, R 
de-excitation process is less likely than the one-quantum process by about two 
orders of  magnitude. 

3.2. Basis sets 

We consider three values of  the initial relative translational energy Ere1. For each 
energy we performed calculations with several basis sets. In particular, we use 
the same value of  js . . . . . .  for Vsum--2, and smaller values for larger Vsum- The 
compositions of the basis sets are summarized in Table 1. Not all basis functions 
correspond to open (i.e., energetically accessible) channels; the number of  open 
channels for each basis set and energy is summarized in Table 2. 

Table  1. Basis sets for  V - V  energy  t ransfe r  calculat ions  

Jsum.max 

Basis /)sum -< 2 /)sum -- 3 /)sum = 4 V~um = 5 N 

1 8 6 . . . . . .  400 

2 9 7 . . . . . .  530 

3 10 8 . . . . . .  694 

4 11 9 . . . . . .  880 

5 10 8 8 . . .  824 

6 10 8 8 1 948 
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Table 2. Number of open channels represented 
in the basis at each relative translational energy 
(in meV) 

Basis 2,455 29 76 

1 162 184 239 
2 207 229 284 
3,5,6 264 286 341 
4 327 349 404 

4. Results 

4.1. V-V energy transfer 
First we consider the process 

HF(vl  = 1,jl  = 0) + HF(v2 = 1,j2 = 0) ~ HF(v~ = 2,j~) + HF(v~ = 0,j~). 

Table 3 summarizes the convergence of  the rotationally summed and total V-V 
transition probabilities with respect to increasing the number of  basis functions. 
First consider the calculations with j . . . . . . .  = 8, 9, 10, and 11 for Vsum__<2 and 

Js  . . . . . .  = 6, 7, 8, and 9, respectively, for Vsum = 3, excluding channels with Vsum > 3. 
These calculations involved 400, 530, 694, and 880 channels, respectively. Com- 
parison of  the 880-channel calculations to the 694-channel calculations show 
convergence of  pVV to better than 1% at all the energies considered here. In 
Table 3, 10 o f  the 12 probabilities for the 694-channel and 880-channel calculations 
agree to within 0.004, and the discrepancies are 0.005 and 0.014 for the other 

Table 3. Partially summed transition probabilities pyV J;um 

Ere I Open Open-channel 
(meV) channels Basis N basis functions Po vv p VV p~V p3VV p W  

2.455 1548 1 400 162 0.711 0.039 0.061 0.024 0.844 
2 530 207 0.809 0.035 0.014 0.003 0.861 
3 684 264 0.846 0.035 0.002 0.002 0.885 
4 880 327 0.846 0.034 0.006 0.007 0.893 
5 824 264 0.891 0.037 0.003 0.003 0.933 
6 948 264 0.897 0.038 0.003 0.003 0.940 

29 1671 1 400 184 0.882 0.039 0.010 0.004 0.936 
2 530 229 0.914 0.039 0.002 0.005 0.960 
3 694 286 0.919 0.042 0.007 0.006 0.976 
4 880 349 0.915 0.043 0.010 0.008 0.978 
5 824 286 0.933 0 . 0 4 1  0.010 0.005 0.990 
6 948 286 0.931 0.040 0.012 0.006 0.990 

76 1888 1 400 239 0.899 0.049 0.012 0.006 0.968 
2 530 284 0.850 0.050 0.044 0.006 0.951 
3 694 341 0.809 0.047 0.063 0.008 0.930 
4 880 404 0.795 0.049 0.065 0.009 0.921 
5 824 341 0.748 0.035 0.082 0.009 0.878 
6 948 341 0.730 0.032 0.089 0.010 0.866 
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two probabilities. This comparison demonstrates  that the rotational basis of  basis 
set 3 is well converged for Vsur,----- 3. It is interesting to note that the convergence 
is attained at j . . . . . . .  = 10 for these V-V calculations, whereas rigid rotator 
calculations [5] for the Alexander-DePris to potential require Js . . . . . .  values of  
about 12-14 in order to converge the results. Next we consider calculations that 
employ the converged rotational basis of  basis set 3 for vs,m__< 3 and also include 
channels with Vsum > 3 in order to converge the vibrational basis. Two additional 
basis sets were considered, one, with 824 channels, which has js . . . . . .  = 6 for 
V~um = 4 and no states with V~um ----- 5, and another, our largest basis of  948 channels, 
in which we included basis functions with jsum = 7 and 8 for V~um--4 and those 
with J~um = 0 and 1 for Vsum = 4 and 5. Values of  pjVVum and pVV calculated with 
these basis sets are also given in Table 3. Comparison of  the 824-channel 
calculations to the 948-channel calculations shows convergence of pVV to better 
than 1.4% at all three energies. I f  we also c o n s i d e r  pjVVm , we see that for 9 of  the 
12 probabilities in Table 5, the 824-channel and 948-channel calculations differ 
by 0.003 or less and for the other probabilities the discrepancies are 0.006, 0.007, 
and 0.019. The convergence is considered acceptable, especially at the two lower 
energies. Furthermore since the comparison of  bases 3 and 4 shows thatj~ . . . . . .  = 8 
is sufficient for the V~um = 3 channels, it should also be sufficient for Vsu~ = 4. The 
final values of  the well converged rotationally summed V-V transition prob- 
abilities are summarized in Table 4. 

The s ta te- to-s ta te  V-V transition probabilities Plolo_>2jioJ~ forj'~un~ - 2 as calculated 
with the four largest basis sets are given in Table 5. As for the results in Table 
3, if  basis 3 agrees with basis 4 and basis 5 with basis 6, then basis 6 should be 
considered converged. For the most part, probabilities with both j~ _< 1 and j~ _ 1 
are well converged. The final values of  the well converged state- to-state  transition 
probabilities are summarized in Table 6. 

4.2. V-R, T energy transfer 

Next we consider the processes 

HE(v1 : 1,ja : 0) + HF(v2 = 1,j2 = 0) ~ HE(D~ = 1 or 0,j~) + HF(v~ = 0,j~). 

Selected transition probabilities from the two largest calculations (bases 4 and 
6) are compared in Table 7, and we see that although convergence is not obtained 
for these probabilities (the calculations differ from each other in v . . . . .  ax and in 
all six Js . . . . . .  limits), the probabilities are very small. Nevertheless the V-R, T 
results are worth considering here because of the interesting contrast of  the j~'um 
distributions for the V-V and V-R, T processes. Examination of  these distributions 

Table 4. Partially summed transition probabilities 

Ere 1 (meV) poVV plVV p2VV p W  

2.455 0.90 0.038 0.003 0.94 
29 0.93 0.040 0.012 0.99 
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Table 5. State-to-state transition probabilities Pto~o~2jloj~ 

j~ j~ AE a Basis 2.455 b 29 b 76 b 

0 0 21 3 0.85 0.92 0.81 
4 0.85 0.92 0.79 
5 0.89 0.93 0.75 
6 0.90 0.93 0.73 

1 0 17 3 0.029 0.033 0.023 
4 0.028 0.036 0.025 
5 0.030 0.029 0.017 
6 0.031 0.028 0.015 

0 1 16 3 0.006 0.010 0.024 
4 0.006 0.007 0.024 
5 0.007 0.012 0.018 
6 0.007 0.012 0.017 

1 1 12 3 0.0003 0.006 0.062 
4 0.0017 0.009 0.064 
5 0.0003 0.009 0.081 
6 0.0004 0.011 0.089 

2 0 7 3 0.0020 0.0010 0.0005 
4 0.0038 0.0009 0.0006 
5 0.0020 0.0010 0.0005 
6 0.0021 0.0010 0.0005 

0 2 6 3 0.0002 0.0002 0.0002 
4 0.0005 0.0004 0.0003 
5 0.0003 0.0003 0.0003 
6 0.0003 0.0003 0.0003 

Transitional energy defect in meV (21 meV= 172 cm -L) 
b Erel in meV (76 meV= 613 cm -1) 

fo r  t h e  V - R ,  T p r o b a b i l i t i e s  s h o w s  t h a t  v i b r a t i o n a l  d e - e x c i t a t i o n  is o f t e n  a c c o m -  

p a n i e d  b y  3 - 1 0  q u a n t a  o f  r o t a t i o n a l  exc i t a t i on .  C o m p a r i s o n  to  T a b l e  2 or  3 s h o w s  

t h a t  t h e r e  is a m u c h  l a rge r  r o t a t i o n a l  c o m p o n e n t  to  t he  v i b r a t i o n a l  d e - e x c i t a t i o n  

t h a n  to  t h e  V - V  e n e r g y  t r a n s f e r  fo r  t he  M A D  p o t e n t i a l .  T h u s  the  sma l l  r o t a t i o n a l  

c o m p o n e n t  o f  t h e  V - V  e n e r g y  t r a n s f e r  p r o c e s s  c a n n o t  be  i n t e r p r e t e d  s i m p l y  as 

a l ack  o f  r o t a t i o n a l - v i b r a t i o n a l  c o u p l i n g  in  t h e  su r f ace .  

F i n a l l y  we  n o t e  t h a t  t h e  u n c o n v e r g e d  t r a n s i t i o n  p r o b a b i l i t i e s  fo r  d e - e x c i t a t i o n  

Table 6. State-to-state transition probabilities 

Jl J~ 2.455 a 29 a 

0 0 0.90 0.93 
1 0 0.03 0.03 
0 1 0.007 0.01 
1 1 0.0004 0.011 
2 0 0.002 0.001 

a Ere~ in meV 
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Table 7. Selected transition probabilities for vibrational de-excitation 

Ere I = 2.455 meV Ere a = 29 meV Er, I = 76 meV 

v~ j~ v~ j~ N = 880 N ~ 948 N = 880 N = 948 N = 880 N = 948 

1 4 0 3 2.4 ( -4)  1.9 ( -5)  2.3 ( -4 )  2.3 (-5)  1.6 ( -4)  7.9 ( -5)  
1 4 0 4 3.7 ( -5)  1.0 ( -4)  5.8 ( -5)  1.5 ( -4)  9.2 ( -5)  2.2 ( -4)  
0 4 0 3 5.7 (-8) 7.6 (-7) 9.7 (-8) 1.6 (-6) 2.4 (-7) 3.5 (-6) 
0 4 0 4 1.6 (-7) 1.6 (-7) 1.0 (-7) 2.7 (-7) 7.4 (-7) 8.7 (-7) 

by a single vibrational quantum are one-to-three orders of magnitude larger than 
those for two-quantum de-excitation. 

5. C o m p u t a t i o n a l  cons iderat ions  

The close coupling calculations were performed using a code specially vectorize'd 
for the Control Data Corporation Cyber 205 pipeline vector computer. We used 
single precision (64-bit) arithmetic and the Minnesota Supercomputer Center's 
two-pipe Cyber 205. The largest calculation, for three energies with 948 channels, 
required about 17.5 hours of computer time. It is interesting to estimate how 
much time would be required to carry out this calculation on a Digital Equipment 
Corporation VAX 11/780 with scalar floating point accelerator. In our initial 
tests [3], we compared times on such a VAX to those on the Cyber 205 for a test 
case having N = 101. Additional tests of  the matrix routines on the VAX indicate 
that for N > 50, the time for a calculation on the VAX scales with N as N 3~ 
Using this factor to scale the execution time for a full calculation with N = 101, 
we estimate for a full three-energy calculation with N - - 9 4 8  a time of  3.0 x 10 4 

hours (3.4 years). Thus we estimate a speed enhancement of the Cyber 205 over 
the VAX of about a factor of  1700. The speed enhancements of the vector pipeline 
Cyber 205 relative to the scalar VAX would increase with increasing N since the 
number of scalar operations increases as N 3 whereas we found that, for N = 
400-948, the CPU time on the Cyber 205 was still increasing only proportionally 
to N 2"6. We estimate speed in millions of floating point operations per second 
(MFLOPS) as follows. Most of  time (about 95% for the N = 948 run and about 
92-94% for other N for this potential) used for our calculations is sl~ent on 
matrix manipulations; in particular for each propagation step at the first energy 
we must diagonalize an N x N matrix, multiply three N x N matrices, and solve 
two sets of linear equations for N different unknown vectors, while for each step 
for the second and third energies we must perform two N x N matrix multiplica- 
tions and solve a set of  linear equations for N different unknown vectors. The 
number of arithmetic operations (addition or multiplication) to perform various 
matrix steps is analyzed elsewhere [5, 25]; in particular the number to perform 
a matrix multiplication is 2 N  3, the number to perform a linear equation solution 
is 8N3/3, and we will take the number to perform a matrix diagonalization to 
be 10N 3 (which may be a slight, 5-10%, underestimate for our problem), so that 

2 N 3 the number of  operations will be about 34 ~ per step, which, when combined 
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with the number of propagation steps we used, 297, and with our actual execution 
time for the N = 948 run, 17.5 CPU hours, yields a lower bound for the operation 
rate of 139 MFLOPS. This compares favorably to the maximum theoretically 
obtainable value [26] of 200 MFLOPS on a two-pipeline machine running in 
single precision performing linked triads. 

6. Discussion and conclusions 

We have shown that it is possible to use currently available vector pipeline 
computers to solve very large sets of close coupling equations and that it is 
possible to converge three-dimensional calculations of V-V energy transfer for 
diatom-diatom collisions, even though a very large number of channels are 
required. Although the present calculations, being restricted to zero total angular 
momentum, cannot be compared to experiment, they provide benchmarks for 
testing approximate dynamical theories that can more easily be applied to all 
total angular momenta. 

Table 5 shows that the state-to-state V-V energy transfer cross sections peak at 
a final state that is nonresonant by 21 meV, and the transition probabilities to 
other channels with smaller translational energy defects are smaller by factors 
of thirty or more. It would be interesting to learn the sensitivity of this rotational 
distribution to the nature of the potential. It would also be interesting to use 
these results to test whether semiclassical methods, which are more easily applied 
than the close coupling method to V-V energy transfer problems, would yield 
similar values of the total V-V transition probability and the accompanying 
rotational distribution if they are applied using the same potential as used here. 

In future work we plan to study the dependence of the results on the nature of 
the intermolecular potential. This requires more effort for calculating matrix 
elements of  the potential, and it may require even larger numbers of channels. 
It is encouraging for the latter reasons to see that pipeline computers can be 
applied with near peak efficiency to solve the close coupling equations for this 
kind of problem. 
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